Arun Gupta

Sunday, 3 June 2018

Python Means ABC Language

  Python is a general purpose high level programming language and    dynamically type programming language.Most easiest programming language.  
                                           
                       

 First language :-

>>>print ("hello word" )  
hello word
>>> a, b=10,20  
>>> print(a+b)            
30
>>>a=10
>>> type(a)
int

When we can use python:-

  • Desktop Application
  • Web Application
  • Database Application                                           
  • Network Application
  • Games
  • Data Analysis
  • Machine Learning
  • Artificial Intelligence
  •  Internet of Things (IoT) Application 
  • Google (YouTube)
  • Facebook (Tornado)  
  • Dropbox.
  • Yahoo.
  • NASA.
  • IBM.
  • Mozilla.
  • Simple and easy to learn
  • Free ware and open source
  • High level programming language
  • Platform Independent(write One and run any where)
  • Portability
  • Dynamically Type
  • Both procedure oriented and Object oriented
  • Interpreted
  • Extensible
  • Embedded
  • Extensive Library
Flavors of the Python programming language:-


  • Cpython ( For C language)                   
  • Jpython ( For Java Platform )
  • IronPython ( for C#,.net Platform )
  • Pypy (Just-in-time compilation )
  • RubyPython (for Ruby Platform )
  • Anaconda Python ( For Big data)
Rules to define identifiers in python:-

1.Alphabet systems (uppercase (A to Z) and lowercase (a to z) )

           digits (0 to 9) or an underscore (_)

      For example:-Cash=20 allow
                              C@sh=20 not allow

2.Identifier  show not starts with digit

For example:- total12=20
                       12total=20 not valid

3.Identifier  are case sensitive 

For example:- total=20
                       TOTAL=20

4.Max length of python identifiers  No length of python identifiers (no limit)


For example:-xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx=10



  1. (_) Private (Start with Underscore)
  2. (__) Strangle private (Two under score)
  3. (____)  Main(social variable in create python)



Reserved words:- ( 33  Keywords )


>>> import keyword

>>> keyword.kwlist

['False', 'None', 'True', 'and', 'as', 'assert', 'break', 'class', 'continue', 'def', 'del', 'elif', 'else', 'except', 'finally', 'for', 'from', 'global', 'if', 'import', 'in', 'is', 'lambda', 'nonlocal', 'not', 'or', 'pass', 'raise', 'return', 'try', 'while', 'with', 'yield']

>>>

Note:- Only alphabet symbols start capital latter (True,False, None) except  three all lowercase.



Data Types:- 14 Types)

     
 1 .int
For example:-   x = 10

2. float  
For example:-  x = 45.67  

3. complex
 For example:-  x = 3.14J

4. bool
 For example:- True or False
True+ True=2; False+True=1; True/True=1;  True/False=Error

5. String :- uses single quotes ' double quotes " and triple quotes """ to denote literal strings.

For example:- firstName = 'Arun'        lastName = "Gupta"
message = """Multi line string literals"""

6. List:-A list can contain a series of values. List variables are declared by using brackets [ ]


  • General purpose
  • Most widely used data structure
  • Useful for variable data

For example:-
X = [ ] # This is a blank list variable
Y = [1, 2, 3, 4] # this list creates an initial list of 4 numbers.
Z = [2, 4, 'Arun'] # lists can contain different variable types.

7. Tuple:-The fixed size is considered immutable as compared to a list that is dynamic and mutable. Tuples are defined by parenthesis ().

  • Immutable(can't add/change)
  • Useful for fixed data
  • Faster than lists

For example:-
xyz = ('Arun', 'Gupta', 'baraunsa', 'sultanpur')

Note:-   Advantages and Disadvantages depends upon the use. If you have such a data which you never want to change then you should have to use tuple, otherwise list is the best option.

8. Dictionary:-Its  are lists of Key:Value pairs and created by using braces ({})  with pairs separated by a comma (,) and the key values associated with a colon(:).
For example:-

xyz = {'Arun': 200, 'Gupta': 100}

9. Bytearray:-
For example:-

10. Range:- range data type represent a sequence of value immutable.

For example:- r=range(10) it represents value 0 to 9
>>>range(10,20,2) ==>  increment of 2==>10,12,14..

11. Set:-Moreover, no duplicate elements can be present.
For example:-

12. Frozenset:-

For example:-

13. None:-

For example:-

14. Bytes:-

For example:-

Note:-  long :-python 3 not available




 Slice Operator:- Extracts elements, based on a begin and end.


  • Begin- starting integer where the slicing of the object starts
  • End - integer until which the slicing takes place. The slicing stops at index end - 1.
  • Step - integer value which determines the increment between each index for slicing

 S[begin:end] S[begin : end :step]
 For example: - S= “arungupta”
S[1:5]==> 1to 4==> ‘ rung’
S[1:5:2]==> ‘rn’


Most important loops and control Statements in python:-


Selection Statements:- Selection statement provides the means of choosing between two or more paths of execution.



  • If
  • If ..else
  • If..elif…else

For example :- 

if n1>n2 and n1>n3
Print (“”)

elif n2>n3:
Print (“”)
Else:
Print (“”)




Repetition Statements:-The repeated execution of a statement or compound statement is accomplished either by iteration or recursion. 
  •  while loop:-Repeat things till the given number of times.

For example 1 :- x=1
While x<=1
Print(x)
X+=1

For example 2:- x=0
While true:
X=x+1
Print(“arun”)
  • for loop:-Repeat things until the loop condition is true.
For example :-For each element in sequence:
Do some action
S= “arungupta”  
        For x in s:  
        Print(x)

Transfer statements:-

Break:-Base on some condition if we want to break look execution.

For example :-WAP to  prints current latter
for letter in 'arunguptapython': 
# break the loop as soon it sees 'a'  or 'n'
if letter == 'a' or letter == 'n':
break
print 'Current Letter :', letter

Result:-Current Letter : a

Continue:-Base on some condition if we want to continue look execution.

For example :-WAP to  prints all letters except 'a' and 'n'
for letter in 'arunguptapython': 
    if letter == 'a' or letter == 'n':
         continue
    print 'Current Letter :', letter
    var = 10
Result:-
Current Letter : r
Current Letter : u
Current Letter : g
Current Letter : u
Current Letter : p
Current Letter : t
Current Letter : p
Current Letter : y
Current Letter : t
Current Letter : h
Current Letter : o

Pass:-pass is a keyword in python
it is an empty statement.
it is null statement.
it won't do anythings.

if True:
else:
    print("arunguptapython")
Errors:
Result:- No Output

if True:pass
else:
    print("arunguptapython")


For example :- WAP to  prints last letter.
for letter in 'arunguptapython':pass
print 'Last Letter :', letter

Result:-
Last Letter : n


Iterators, Iterables, Generators, Containers, Decorators and Closures in Python:-





Iterators:-It is create our own iter() and next() methods and  only one element is stored in the memory at a time.For example, an odd number iterator currently at 3 returns the next odd number of 5. 
For example:-
 













Iterables :-An iterable is any object, not necessarily a data structure, that can return an iterator

For example:-













Here, x is the iterable, while y and z are two individual instances of an iterator.

Generators:- It is a sequence of values and generator in python makes use of the ‘yield’ keyword.
We can say every generator is an iterator in python, not every python iterator is a generator.

Syntax:-
def even(y): 
       while(y!=0): 
           if y%2==0: 
                 yield y
              y-=1 
for j in even(8):
               print(j)

Two types of Generators :-

 Generator functions:-It is any function in which the keyword yield appears in its body.

Generator expressions:-it is equivalent to list comprehension.
For example:-







OR

 sum([y*y for y in range(1,10)])

Containers:-Containers are data structures holding elements.They are data structures that live in memory, and typically hold all their values in memory.

For examples:-


  • list, deque
  • set, frozensets.
  • dict, defaultdict, OrderedDict, Counter.
  • tuple, namedtuple.
  • str



Decorators:-It is way to dynamically add some new behavior to some objects

For example:-
>>> def my_deco(func):
...     def wrapper(*args, **kwargs):
...         print("Before")
...         result = func(*args, **kwargs)
...         print("After")
...         return result
...     return wrapper
...
>>> @my_deco
... def add(a, b):
...     "Our add function"
...     return a + b
...
>>> add(1, 3)
Before
After
4
Closures:-It is nothing but functions that are returned by another function. We use closures to remove code duplication. 
For example:-
>>> def add_number(num):
...     def adder(number):
...         'adder is a closure'
...         return num + number
...     return adder
...
>>> a_10 = add_number(10)
>>> a_10(21)
31
>>> a_10(34)
44
>>> a_5 = add_number(5)
>>> a_5(3)

8

Importance of functions in Python:-
  • Reduce the length of code and improve readability.
  • Very complex problem we can solve very easily.
  • Pass function argument another function in python.
  • Reducing duplication of code and Information hiding in python
  • Decomposing complex problems into simpler pieces
  • Improving clarity of the code and reuse of code in python
  • Function can pass parameter and return value  in python
  • Return multiple value(used tuple)
  • Default return value is none.
  • Function is start by the "def " statement followed by the function name and parentheses ( () )
  • The code within every function begin with a colon (:) and should be indented (space)

 Important Parameters Types in Python:-



 Default Arguments :- default return value is none.
The default value is assigned by using assignment (=) operator.
 The default argument is passed automatically and appears in the output of the function call.
Syntax:- 




OUTPUT:- Arun  welcome to here!
Keyword Arguments :- When invoking a function, inside the parentheses there are always 0 or more values, separated by commas.
Syntax:- 









here a="b" , c=11 keyword parameter and a="arun", c=10 are keyword
argument.

Positional Arguments:- A positional argument is any argument that's not supplied as a key=value pair.
Syntax:-







because first we a will get value 1 and then we are treating it as keyword argument and providing extra value which is 3 now a have two values
a=1 which is positional value
a=3 which is keyword value

Variable Arguments:-
*args and **kwargs in Python
We use *args and **kwargs as an argument when we are unsure about the number of arguments to pass in the functions.
1.*args (Non Keyword Arguments):- Passes variable length non keyword argument to function using *args.
  • *args passes variable number of non-key word arguments list and on which operation of the list can be performed.
For example:-

Output:-
Sum: 17
Sum: 17
Sum: 35
  1. **kwargs (Keyword Arguments):- Passes variable length non keyword argument to function using *args but we cannot use this to pass keyword argument. For this problem Python has got a solution called **kwargs, it allows us to pass the variable length of keyword arguments to the function.
  • **kwargs passes variable number of keyword arguments dictionary to function on which operation of a dictionary can be performed.
For example:-



Output:-
Place=delhi
FName=Arun
Mname=kumar
Lname=gupta
Address=sultanpur



More example:-







OUTPUT:-




Most Important Functions in Python:-

Built-in Function:-
abs()   all()    any()  basestring()   bin()   bool()
bytearray()    callable()       chr()   classmethod() cmp()  compile()
complex()      delattr()        dict()   dir()    divmod()       enumerate()
eval()  exec() execfile()       file()   filter() float()
format()        frozenset()    getattr()
User-defined Function:-User-defined function are reusable code blocks; they only need to be written once, then they can be used multiple times. They can even be used in other applications, too.
Syntax:-
def userDefFunction (arg1, arg2, arg3 ...):
    program statement1
    program statement3
    program statement3
    ....
   return;
Recursive Function:-A function that call itself recursive function
Syntax:-
  factorial (n)=n* factorial (n-1)
For example:-
  factorial (3)=3* factorial (2)










The termination condition: n == 0
The reduction step where the function calls itself with a smaller number each time: factorial (n - 1)

Output:-
1
5040

Lambda Expression Function:-
syntax for lambda:- lambda <args>: <expression>








Output:-
GuptaArun
Multiple things inside a lambda:-

Filter():-filter function check same filter
Syntax:- filter(function, Sequence)




Output:-
[2, 4, 6, 8, 10]
Map():- Pass multiple iterables to the map function like list, dictionary, etc.
Syntax:- map(function, iterable1, iterable2, iterable3...)
  



Output:-
[2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22]

Reduce():-It used a rolling computation to sequential pairs of values in a list. It returns a single value.
Syntax:- reduce(function, Sequence)









Output:-
10
45


 Anonymous Function:-Without nameless function call anonymous function.
Syntax:- lambda arguments : expression






Output:-
8
10

Nested functions:-One function to call another function in same function.
Write one used multiple time.
Syntax:-
 def outerfunctin(x):
     def innerfunction():
      print(x)
     innerfunction()
outerfunctin(1)









Output:-
the sum: 30
the average: 15.0
the sum: 50
the average: 25.0

Decorators function:-New functionality look existing functions is already there.
Syntax:-










Output:-
hi Gupta good morning

Variables in Python:- variable is a reserved memory location to store values.
Local Variables:- you want to use the variable in a specific function or method, you use a local variable.
Global  Variables:- you want to use the same variable for rest of your program or module you declare it a global variable
For Example:-











Output:-
503
pyarungupta.blogsport.com

503
module :-
  • A group of functions and variables saved to a file.
  • Code reusability.
  • Length of the code will be reduced and readability maintainability.

Syntax:- Import module 1
Import module 1, module 2, module 3
Import  module 1 as m1  (aliasing modules)

Reloading a module:-module loaded only  one time.

Finding member of a module by using dir() function
dir():-current module member

['BPF', 'LOG4', 'NV_MAGICCONST', 'RECIP_BPF', 'Random',
'SG_MAGICCONST', 'SystemRandom', 'TWOPI', 'WichmannHill',
'_BuiltinMethodType', '_MethodType', '__all__',
'__builtins__', '__doc__', '__file__', '__name__',
'__package__', '_acos', '_ceil', '_cos', '_e', '_exp',
'_hashlib', '_hexlify', '_inst', '_log', '_pi', '_random',
'_sin', '_sqrt', '_test', '_test_generator', '_urandom',
'_warn', 'betavariate', 'choice', 'division',
'expovariate', 'gammavariate', 'gauss', 'getrandbits',
'getstate', 'jumpahead', 'lognormvariate', 'normalvariate',
'paretovariate', 'randint', 'random', 'randrange',
'sample', 'seed', 'setstate', 'shuffle', 'triangular',
'uniform', 'vonmisesvariate', 'weibullvariate']

Working with math module:-
 Define several functions for math operation




















output:-




Random module:-
random() :-between 0 and 1 (not inclusive)
randint():-randint(1,100) (inclusive)
For example:-




















output:-





uniform():-
syntax:-uniform (x,y)

For example:-

from random import *

for i in range (20):


 print(uniform(1,10))


randrange (start , stop, step):-start <= x < stop
randrange (10) generate a number from 0 to 9
randrange (1,11) generate a number from 1 to 10
randrange (1,11,2) generate a number (1,3,5,7,9)

Installing Modules:- pip install numpy



























Exceptions Handling in Python -try..except.. else.. finally:-



try :- Enters at the top and continues through the block

except :- Jump to there is an exception is thrown

else:- Run after the try block completes without exception thrown

finally :- Always run after the other blocks have completed

  • try block compulsory  we should write either except or finally block.
  • except without try is invalid.
  • finally without try is invalid
  • we can take multiple except blocks for the same try but we cannot take multiple .
  • else without except is invalid.
  • try.. except.. else ...finally order is important.
  • Nesting of try...except... else... finally is passable.
  • Try without except or finally is always invalid.
  • Without  try except is always invalid.






try:

Risky code

except:

Will be executed if exception in try

else:

Will be executed if no exception in try

finally:

Will be executed always whether exception raised or not raised and handled or not handled.



Invalid  and valid
............................valid
try:
print("try")
finally:
print("finally")
..............................valid
try:
print("try")
except:
print("except")

...................................valid
try:
print("try")
except:
print("except")
else:
print("else")
.................................Invalid  

try:

print("try")

else:
print("else")

........................................Invalid  


try:

print("try")

else:
print("else")
finally:
print("finally")
....................................Invalid  

try:

print("try")

except:

print("except")
finally:
print("finally 1")
finally:
print("finally 2")

.........................................Invalid  


try:

print("try")

except:

print("except")

print("except 1")
finally:
print("finally")

......................................Invalid  
try:
print("try")
except:
print("except")
try:
print("try")
else:
print("else")
................................Invalid  


try:

print("try")

try:

print("try1")

except:

print("except")

finally:
print("finally")

....................................................





Predefined exception (Inbuilt exception):- The exception which is raised automatically by python whenever a particular event occurs.

For example:-
Print (10/0) zero division error
x=int ("ten") value error

User defined exception (Customized exception):-

For example:-Invalid coupon code exception
def recharge(number):
if number is not valid:

raise invalid coupon code exception



Pickling and unpickling in Python (serialization, marshalling, or flattening):-

Pickling:- It is the process whereby a Python object hierarchy is converted into a byte stream.
  • Pickling is just serialization
  • Pickling in python refers to the process of serializing objects into binary streams.
  • convert the relevant state from a python object into a string.
  • Pickling is a way to convert a python object (list, dict, etc.) into a character stream.
  • pickle module has an optimized cousin called the cPickle module
  • pickle has two main methods. The first one is dump, which dumps an object to a file object and the second one is load, which loads an object from a file object.

Syntax:- Pickle: Pickle.dump (object,file)

 Unpickling:- It is the inverse operation, whereby a byte stream is converted back into an object hierarchy.
  • Unpickling is the inverse of Pickling.
  • convert the string to a live object.
  • Unpickling is just deserialise

Syntax:-Unpickling: Pickle.load (file)

 We use -import pickle

For example:-
import Pickle
class emp:
def __init__(self,empid,empname):
         self.empid=empid                            #constructor
        self.empname=empname
def display(self):
          print(self.enpid,”\t”,self.empname,”\t”)
with open (“emp.dat”, “wb”) as f:
           e=emp (100, ’pyarungupta’)              
            pickle.dump(e,f)                               #  Pickling
            print(“pickling of employee”)
 with open (“emp.dat”,”rb”) as f:
      obj.pickle.load(f)                                    # Unpickling
   print(“emp info after unpickling”)
obj.display()

print(obj)


Simply put, anywhere you need to check if a string matches or sequence of character(s) a certain pattern and maybe extract certain information from that pattern.


  • Data validation (such as email address or password, Mobile Number)
  • Text search
  • Pattern Matching
  • Search a string (search and match)
  • Finding a string (findall)
  • Break string into a sub strings (split)
  • Replace part of a string (sub)


re module:-regular expressions (Regex) are supported by the re module


[abc]:- Match either a or b or c.

[^abc]:- Match except a and b and c.

[a-z]:-Match any lowercase alphabet symbols.

[A-Z]:-Match any uppercase alphabet symbols.

[0-9]:- Match any digit; same as [0123456789].

[a-zA-Z0-9]:-Match any of the above


\s:-Match space character

\S:-Match except space character

\d:-Match [0-9] any digit

\D:-Match except digit

\w:-Match any word character (alphanumeric character [a-zA-Z0-9])

\W:-Match any word character except word (Special character [^a-zA-Z0-9])

. :- Match every character  except newline



  1. match (pattern, string)
  2. full match(pattern, string)
  3. searchpattern, string()
  4. findall(pattern, string)
  5. finditer()
  6. split(pattern, string, [maxsplit=0])
  7. sub(pattern, repl, string)
  8. subn(pattern, repl, string)
  9. compile(pattern, repl, string)
  10. escape(string)


Let’s look at them one by one.


match ():- Finds match if it occurs at start of the string.
checks for a match only at the beginning of the string.
match is much faster than search

Syntax:-re.match(pattern, string)

For example:-


fullmatch():-Match whole string in the regular expression pattern.

Syntax:-re.fullmatch(pattern, string)

For example:-


search():- matches the first instance of a pattern in a string, and returns it as a re match object.
checks for a match anywhere in the string

Syntax:-re. search (pattern, string)

For example:-


findall():-  matches all instances of a pattern in a string and returns them in a list,
Syntax:-re. findall (pattern, string)

For example:-


finditer():-its return an iterator yielding match objects over all non-overlapping matches for the RE pattern in string.

Syntax:-re. finditer (pattern, string)

For example:-




split():-Split string by the occurrences of a character or a pattern.

Syntax:-re. split (pattern, string, [maxsplit=0])

For example:-


sub():-search a pattern and replace with a new sub string(Substitution and replacement)
Syntax:-re. sub (pattern, repl, string )

re.sub(regex,replacement,target of string)

For example:-


subn():- Number of replacement happened.

Syntax:-re. subn (pattern, repl, string )

t=re.subn(regex,replacement,target of string)
subn() is similar to sub() in all ways, except in its way to providing output. It returns a tuple with count of total of replacement 
tuple(result string,number of replacement)

For example:-

compile():- Regex  are compiled into pattern objects, which have methods for various operations such as searching for pattern matches or performing string substitutions
Syntax:- re. compile (pattern, repl, string)

For example:-


escape():-Its return string with all non-alpha numeric back slashed.

Syntax:- re.escape(string)

For example:-













Python Database Programming (PDB):- it’s very common requirement to save data for the future purpose.

Temporary storage areas:-PVM (python virtual memory)

For Example:- list, tuple, dict.Etc

Permanent storage areas:-

File System:- Best suitable to store very less amount of info

For Example:-Excel, access

Limitation:-
  • Huge data
  • No query language support
  • Security
  • Prevent duplicate data
  • Data consistency problem

Then go for next database……………
Database:-
  • We can store huge amount of info
  • Query language support
  • Security is more
  • Table duplication

Limitation:-
  • Cannot hold very huge amount of info like tera bytes of data.
  • Structured data but not for unstructured and semi structured data (XML, Network logs)


Advanced data storage technologies ---Hadoop Big data

Python database Communication(PDBC):-

Standard step to communication with database
1.Import that database specific module

             import pyodbc

2. Establish connection between python program and database

            cnxn = pyodbc.connect('Driver={SQL Server};'   'Server=.;'  'Database=IFRACAS;'   'Trusted_Connection=yes;')

3.Cursor object

              cursor = cnxn.cursor()

4.Execute our SQL query

                 cursor.execute('SELECT * FROM pyarungupta')

5.Fetch the results

                for row in cursor:
                print(row)

6. Commit(), rollback()

7.Cursur.closed()

8.Connection .closed()

           Working with SQL database:-

Pip Install  pyodbc

Establish the connection between Python and SQL Server using the pyodbc library 

For example:-

import pyodbc
cnxn = pyodbc.connect('Driver={SQL Server};'
                      'Server=.;'
                      'Database=IFRACAS;'
                      'Trusted_Connection=yes;')
 cursor = cnxn.cursor()
cursor.execute('SELECT * FROM pyarungupta')
 for row in cursor:
    print(row)

Creating a table named pyarungupta

CREATE TABLE [dbo].[pyarungupta](
[id] [int] IDENTITY(1,1) NOT NULL,
[name] [nchar](10) NULL,
[Age] [nchar](10) NULL,
[city] [nchar](10) NULL
) ON [PRIMARY]



























Insert Data To Database:-





And check the database, it will contain data which you have inserted.


















Update In Database:-




And check the database, it will contain data which you have Updated.




Delete From the Database:-

 
Retrieve Data from the Database:-



We can retrieve data from the database by two ways.
  • Fetch one row at a time:- We call fetchone() method.






  • Fetch all rows: We call fetchall() method.































Tips & Tricks to write better python:-


1.Simplify if statement:-


Verify multiple values, we can do in the following manner.

The bad way
if m==1 or m==3 or m==5 or m==7:
The good way
if m in [1,3,5,7]:

2.Check the memory usage of an object:-
>>>import sys
>>>x=2
>>>print(sys.getsizeof(x))
 14
3.Create a dictionary from two related sequences:-
>>>t1 = (1, 2, 3)
>>>t2 = (10, 20, 30)
>>>print(dict (zip(t1,t2)))

  {1: 10, 2: 20, 3: 30}

4.Transposing a Matrix:-

>>> mat = [[1, 2, 3], [4, 5, 6]]
>>> zip(*mat)
[(1, 4), (2, 5), (3, 6)]

5.Swap two numbers with one line of code:-

>>> a=7
>>> b=5
>>> b, a =a, b
>>> a
5
>>> b
7
6.Print "arunarunarunarun guptaguptaguptaguptagupta" without using loops:-

>>> print ("arun"*4+' '+"gupta"*5)

arunarunarunarun guptaguptaguptaguptagupta

7.Convert it to a single list without using any loops:-

a = [[1, 2], [3, 4], [5, 6]]
Output:- [1, 2, 3, 4, 5, 6]

>>> import itertools
>>> list(itertools.chain.from_iterable(a))
[1, 2, 3, 4, 5, 6]
8.Taking a string input:-
For example "1 2 3 4" and return [1, 2, 3, 4]
Remember list being returned has integers in it.
Don't use more than one line of code.
>>> result = map(lambda x:int(x) ,raw_input().split())
1 2 3 4
>>> result

[1, 2, 3, 4]




16 comments:

  1. Good article for python basics

    ReplyDelete
  2. Very good article. It is very useful.

    ReplyDelete
  3. Thanka for giving great info on great blogs. I will definitely will look up the web to find inspirations.

    ReplyDelete
  4. Nice documents

    ReplyDelete
  5. thank you to all for watching this blog..
    please share your comment & suggestion!!

    ReplyDelete
  6. Nice and knowledgeable article.

    ReplyDelete
  7. Good one for python developers....begineer will learn python programming and prototype easily in 5 mins

    ReplyDelete
  8. Thank you all for your valuable comments .

    ReplyDelete
  9. Very Nice Effort sir these are amazingly good stuff from beginner to advance level.

    ReplyDelete
  10. Thank you all for your valuable comments .

    ReplyDelete
  11. Thanks for visiting our blog website.

    ReplyDelete